Microvascular occlusions promote coronary collateral growth

Author:

Chilian W. M.1,Mass H. J.1,Williams S. E.1,Layne S. M.1,Smith E. E.1,Scheel K. W.1

Affiliation:

1. Microcirculation Research Institute, Texas A & M UniversityCollege of Medicine, College Station 77843-1114.

Abstract

The objective of this study was to examine whether myocardial ischemia without alterations in pressure gradients between large epicardial coronary arteries was a sufficient stimulus to produce coronary collateral growth and development. To accomplish this aim, we partially embolized the circumflex coronary perfusion territory with 25-microns diameter microspheres to produce multiple microvascular occlusions, sufficient to abolish or greatly attenuate coronary vasodilator reserve. The embolization procedure was performed in two groups of dogs during aseptic surgery. After the dogs recovered for 1-3 wk (short-term embolization) or 6-8 wk (long-term embolization), indexes of vascular growth were compared with a group of control animals in which all operative procedures were performed, except embolization. Retrograde blood flow, an index of collateral blood flow and coronary vascular resistance, was determined in an isolated beating empty heart preparation during coronary vasodilation with adenosine. Circumflex retrograde blood flow from the left anterior descending artery was increased from 0.09 ml.min-1.g-1 (sham) to 0.21 and 0.17 ml.min-1.g-1 in the short-term and long-term groups, respectively (P less than 0.05). Collateral blood flow from the septal artery was also increased from 0.03 ml.min-1.g-1 (sham) to 0.08 ml.min-1.g-1 (P less than 0.05) in the short-term group. Collateral contribution from the right coronary artery was not significantly altered in either group of embolization animals. The contributions of epicardial and intramyocardial collaterals to the total retrograde flow were also determined and were found to be different among the three experimental groups.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3