Flow heterogeneity following global no-flow ischemia in isolated rabbit heart

Author:

Marshall Robert C.12,Powers-Risius Patricia1,Reutter Bryan W.1,Schustz Amy M.1,Kuo Chaincy1,Huesman Michelle K.1,Huesman Ronald H.1

Affiliation:

1. Department of Nuclear Medicine and Functional Imaging, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley 94720-8119; and

2. Martinez Veterans Affairs, Northern California Health Care System, Martinez, California 95616

Abstract

The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion after 60-min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five nonischemic controls. Relative flow heterogeneity was expressed as relative dispersion (RD) and computed as standard deviation/mean. In postischemic vs. preischemic hearts, RD was increased for the whole LV (0.92 ± 0.41 vs. 0.37 ± 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium considered separately (1.28 ± 0.74 vs. 0.30 ± 0.09 and 0.69 ± 0.22 vs. 0.38 ± 0.08; P < 0.05 for both comparisons, respectively) during early reperfusion. During late reperfusion, the increased RD for the whole LV and Endo remained significant (0.70 ± 0.22 vs. 0.37 ± 0.07 and 1.06 ± 0.55 vs. 0.30 ± 0.09; P < 0.05 for both comparisons, respectively). In addition to the increase in postischemic flow heterogeneity, there were some regions demonstrating severely impaired reflow, indicating that regional ischemia can persist despite restoration of normal global flow. Also, the relationship between regional and global flow was altered by the increased postischemic flow heterogeneity, substantially reducing the significance of measured global LV reflow. These observations emphasize the need to quantify regional flow during reperfusion after sustained no-flow ischemia in the isolated rabbit heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3