Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles

Author:

Stacy G. P.1,Jobe R. L.1,Taylor L. K.1,Hansen D. E.1

Affiliation:

1. Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2107.

Abstract

Transient diastolic stretch of the left ventricle predictably elicits arrhythmias. To investigate the mechanism of such stretch-induced arrhythmias, monophasic action potentials were recorded from six blood-perfused isolated canine left ventricles with an epicardial contact electrode. Stretch-induced arrhythmias were elicited using a computerized servo-pump system that increased left ventricular volume for 250 ms during early diastole. Depolarizations that coincided with the onset of stretch were observed that always preceded the stretch-induced arrhythmia. As stretch volume (delta V) increased from 10 to 30 ml, the amplitude of the stretch-induced depolarization increased progressively and the probability of eliciting an arrhythmia rose from 30 to 94%. To exclude motion artifact, additional recordings were made after the heart was depolarized by increasing the perfusate K+ concentration to 154 mM (K arrest). After K arrest, the stretch-induced depolarizations were reduced by 95% or more (P less than 0.05) at all stretch volumes. Thus the change in monophasic action potential signal during transient diastolic stretch reflects actual depolarization of the myocardium with negligible motion artifact. When the stretch-activated channel blocker, Gd3+ (10 microM), was administered, which produces potent inhibition of stretch-induced arrhythmias in our model, the stretch-induced depolarizations were substantially reduced in magnitude. Our results show that as diastolic stretch increases, stretch-induced depolarizations become larger and reach threshold potential more often; consequently, the probability of eliciting a stretch-induced arrhythmia increases. This mechanism of arrhythmogenesis may be particularly important in patients with regionally or globally dilated left ventricles.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3