Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho kinase and protein kinase C

Author:

Lan Christopher1,Das Debarsi1,Wloskowicz Andrew1,Vollrath Bozena1

Affiliation:

1. Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Abstract

Endothelin-1 (ET-1) and oxyhemoglobin (OxyHb) have been implicated in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. However, the contribution of ET-1 to this condition has not been definitely established. In this study, we investigated whether threshold concentration of ET-1 enhances cerebrovascular smooth muscle (CVSM) contraction to OxyHb by activating the RhoA/Rho kinase and protein kinase C (PKC) pathways. CVSM contraction was measured in endothelium-denuded rabbit basilar arteries. Cytosolic and particulate fractions of CVSM cells were examined for RhoA and PKC reactivity with specific antibodies using immunoblotting procedures. ET-1 (0.1 nM) alone did not produce any significant contraction, but it markedly potentiated the magnitude (223% of control) and rate (149% of control) of contraction in response to OxyHb, which was attenuated by the inhibitors of Rho kinase Y-27632 and HA-1077. ET-1-mediated potentiation of the contraction was also inhibited by inhibitors of PKC, Ro-32-0432, and GF-109203X. BQ-123 prevented potentiation of vasoconstriction mediated by ET-1, indicating that the action of ET-1 was mediated by the endothelin type A receptor. Pretreatment with ET-1 significantly enhanced OxyHb-mediated RhoA translocation in CVSM cells and intact basilar arteries. ET-1 also caused potentiation of PKC-ϵ expression in membranes of CVSM cells exposed to OxyHb for 10 and 60 min but did not markedly change the distribution of PKC-α. Thus, in CVSM, threshold concentration of ET-1 potentiates contraction induced by OxyHb via RhoA/Rho kinase- and PKC-ϵ-dependent mechanisms. This process may contribute to the pathological contraction of cerebral arteries observed after subarachnoid hemorrhage.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3