Affiliation:
1. Department of Physics, Faculty of Science , University of Guilan , Postal Code 4193833697 , Rasht , Iran , p.taherparvar@guilan.ac.ir
Abstract
Abstract
Permanent and temporary implantation of I-125 brachytherapy sources has become an official method for the treatment of different cancers. In this technique, it is essential to determine dose distribution around the brachytherapy source to choose the optimal treatment plan. In this study, the dosimetric parameters for a new interstitial brachytherapy source I-125 (IrSeed-125) were calculated with GATE/GEANT4 Monte Carlo code. Dose rate constant, radial dose function and 2D anisotropy function were calculated inside a water phantom (based on the recommendations of TG-43U1 protocol), and inside several tissue phantoms around the IrSeed-125 capsule. Acquired results were compared with MCNP simulation and experimental data. The dose rate constant of IrSeed-125 in the water phantom was about 1.038 cGy·h−1U−1 that shows good consistency with the experimental data. The radial dose function at 0.5, 0.9, 1.8, 3 and 7 cm radial distances were obtained as 1.095, 1.019, 0.826, 0.605, and 0.188, respectively. The results of the IrSeed-125 is not only in good agreement with those calculated by other simulation with MCNP code but also are closer to the experimental results. Discrepancies in the estimation of dose around IrSeed-125 capsule in the muscle and fat tissue phantoms are greater than the breast and lung phantoms in comparison with the water phantom. Results show that GATE/GEANT4 Monte Carlo code produces accurate results for dosimetric parameters of the IrSeed-125 LDR brachytherapy source with choosing the appropriate physics list. There are some differences in the dose calculation in the tissue phantoms in comparison with water phantom, especially in long distances from the source center, which may cause errors in the estimation of dose around brachytherapy sources that are not taken account by the TG43-U1 formalism.
Reference25 articles.
1. [1] Russell KJ, Blasko JC. Recent advances in interstitial brachytherapy for localized prostate cancer. in: Therapeutic strategies in prostate cancer. Problems in urology series. Vol. 7. 4th edition. J. B. Lippincott Co, Philadelphia; 1993: 260-278.
2. [2] Ghiassi-Nejad M, Jafarizadeh M, Ahmadian-Pour MR, Ghahramani AR. Dosimetric characteristics of 192Ir sources used in interstitial brachytherapy. Appl Radiat Isot. 2001;55(2):189-195.10.1016/S0969-8043(00)00375-4
3. [3] Nath R, Anderson LL, Luxton G, et al. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995;22(2):209-234.10.1118/1.597458
4. [4] Heintz BH, Wallace RE, Hevezi JM. Comparison of I-125 sources used for permanent interstitial implants. Med Phys. 2001;28(4):671-682.10.1118/1.1359246
5. [5] Rivard MJ, Butler WM, DeWerd LA, et al. Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys. 2007;34(6):2187-2205.10.1118/1.2736790
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献