Affiliation:
1. Poznań University of Technology, Piotrowo 3, 61-138, Poland
Abstract
Abstract
The present paper presents comparative results of the forecasting of a cutting tool wear with the application of different methods of diagnostic deduction based on the measurement of cutting force components. The research was carried out during the milling of the Duralcan F3S.10S aluminum-ceramic composite. Prediction of the toolwear was based on one variable, two variables regression Multilayer Perceptron(MLP)and Radial Basis Function(RBF)neural networks. Forecasting the condition of the cutting tool on the basis of cutting forces has yielded very satisfactory results.
Reference13 articles.
1. [1] Bullinaria J., Radial Basis Function Networks: Introduction, Neutral Computation: Lecture 13, 2015.
2. [2] Burek J., Babiarz R., Sułowski P., Sałata M., Diagnostyka procesu wysokowydajnościowego frezowania stopów aluminium, Mechanik nr 11/2016, pp. 1652-1653.
3. [3] Jemielniak K., Automatyczna diagnostyka stanu narzędzia i procesu skrawania, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2002. pp. 3-8, 159-172.
4. [4] Kumar R., Chattopadhyaya S., Hloch S., Krolczyk G., Legutko S., Wear characteristics and defects analysis of friction stir welded joint of aluminium alloy 6061-t6, Eksploatacja i niezawodność, Volume 18, Issue 1, 2016, Pages 128-135
5. [5] Lenke I. Rogowski D., Design of metal ceramic composites, International Jurnal of Materials Research 95(5), pp. 676-680, 2006.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献