Data-Driven Temporal-Spatial Model for the Prediction of AQI in Nanjing

Author:

Zhao Xuan1,Song Meichen1,Liu Anqi1,Wang Yiming1,Wang Tong1,Cao Jinde1

Affiliation:

1. School of Mathematics , Southeast University , Nanjing 210096, P. R. China

Abstract

Abstract Air quality data prediction in urban area is of great significance to control air pollution and protect the public health. The prediction of the air quality in the monitoring station is well studied in existing researches. However, air-quality-monitor stations are insufficient in most cities and the air quality varies from one place to another dramatically due to complex factors. A novel model is established in this paper to estimate and predict the Air Quality Index (AQI) of the areas without monitoring stations in Nanjing. The proposed model predicts AQI in a non-monitoring area both in temporal dimension and in spatial dimension respectively. The temporal dimension model is presented at first based on the enhanced k-Nearest Neighbor (KNN) algorithm to predict the AQI values among monitoring stations, the acceptability of the results achieves 92% for one-hour prediction. Meanwhile, in order to forecast the evolution of air quality in the spatial dimension, the method is utilized with the help of Back Propagation neural network (BP), which considers geographical distance. Furthermore, to improve the accuracy and adaptability of the spatial model, the similarity of topological structure is introduced. Especially, the temporal-spatial model is built and its adaptability is tested on a specific non-monitoring site, Jiulonghu Campus of Southeast University. The result demonstrates that the acceptability achieves 73.8% on average. The current paper provides strong evidence suggesting that the proposed non-parametric and data-driven approach for air quality forecasting provides promising results.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modelling and Simulation,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3