Performance Analysis of Rough Set–Based Hybrid Classification Systems in the Case of Missing Values

Author:

Nowicki Robert K.1,Seliga Robert23,Żelasko Dariusz4,Hayashi Yoichi5

Affiliation:

1. Department of Intelligent Computer Systems , Czestochowa University of Technology , Czestochowa , Poland

2. Management Department , University of Social Science , 90–113 Lodz , Poland

3. Clark University , Worcester, MA 01610, USA

4. Faculty of Computer Science and Telecommunications , Cracow University of Technology Warszawska 24, 31-155 Krakow , Poland

5. Department of Computer Science , Meiji University , Kawasaki 214-8571 Japan

Abstract

Abstract The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Explainable AI Model for Medical Data Analysis;Journal of Artificial Intelligence and Soft Computing Research;2024-03-01

2. Dynamic Signature Verification Using Selected Regions;Artificial Intelligence and Soft Computing;2023

3. Hand Gesture Recognition for Medical Purposes Using CNN;Artificial Intelligence and Soft Computing;2023

4. Type-2 Fuzzy Classifier with Smooth Type-Reduction;Artificial Intelligence and Soft Computing;2023

5. Human-AI Collaboration to Increase the Perception of VR;Artificial Intelligence and Soft Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3