N-dimensional B-spline surface estimated by lofting for locally improving IRI

Author:

Koch K.1,Schmidt M.2

Affiliation:

1. Institute of Geodesy and Geoinformation, Theoretical Geodesy, University of Bonn, Nussallee 17, 53115 Bonn, Germany1

2. Deutsches Geodätisches Forschungsinstitut (DGFI), Alfons-Goppel-Strasse 11, 80539 München, Germany2

Abstract

N-dimensional B-spline surface estimated by lofting for locally improving IRIN-dimensional surfaces are defined by the tensor product of B-spline basis functions. To estimate the unknown control points of these B-spline surfaces, the lofting method also called skinning method by cross-sectional curve fits is applied. It is shown by an analytical proof and numerically confirmed by the example of a four-dimensional surface that the results of the lofting method agree with the ones of the simultaneous estimation of the unknown control points. The numerical complexity for estimating vn control points by the lofting method is O(vn+1) while it results in O(v3n) for the simultaneous estimation. It is also shown that a B-spline surface estimated by a simultaneous estimation can be extended to higher dimensions by the lofting method, thus saving computer time.An application of this method is the local improvement of the International Reference Ionosphere (IRI), e.g. by the slant total electron content (STEC) obtained by dual-frequency observations of the Global Navigation Satellite System (GNSS). Three-dimensional B-spline surfaces at different time epochs have to be determined by the simultaneous estimation of the control points for this improvement. A four-dimensional representation in space and time of the electron density of the ionosphere is desirable. It can be obtained by the lofting method. This takes less computer time than determining the four-dimensional surface solely by a simultaneous estimation.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3