Google Trends of political parties in Europe: a fractal exploration

Author:

Gutierrez-Barroso Josue1ORCID,Báez-García Alberto Javier1ORCID,Flores-Muñoz Francisco2ORCID,Ruiz Medina Luis Javier1ORCID,Trujillo González Juan Vianney1ORCID,Padrón-Armas Ana Goretty1ORCID

Affiliation:

1. Universidad de La Laguna , Tenerife , Spain

2. Facultad de Economía , Empresa y Turismo – Universidad de La Laguna , Campus de Guajara, Cam. la Hornera, s/n, 38071 La Laguna , Santa Cruz de Tenerife

Abstract

Abstract Google Trends, despite its controversial nature for some authors, can be considered an illustrative tool in exploring the political inclinations of a given audience. In the current European Union context, understanding the views and opinions of the public is of paramount importance. Through the analysis of search trends, Google Trends can provide valuable insights into the popularity of political parties in the context of the European Union along with other jurisdictions and how these trends change over time. Furthermore, by incorporating fractal dimensions and ARFIMA (Autoregressive Fractionally Integrated Moving Average) analysis into the data obtained, it is possible to reveal previously non-evident relationships, thereby providing a more comprehensive understanding of the audience‘s political leanings and their interest in specific political parties. The aim of this exploratory study is to assess the potential of ARFIMA, applied to Google Trends data, in characterizing political parties. Preliminary results indicate that this apparatus can be useful for that purpose.

Publisher

Walter de Gruyter GmbH

Reference35 articles.

1. Abraham-Frois, G. (1998). Non-linear dynamics and endogenous cycles (Vol. 463). Springer Science & Business Media.

2. Beyer, J. (2012). Acting in Good time–Conceptual reflections on the Sequencing of Political reform Processes. Central European Journal of Public Policy, 6(02), 4–28.

3. Box, G. E., & Jenkins, G. M. (1970). Time series models for forecasting and control. San Francisco.

4. Curran, T., & Singh, R. (2011). E-democracy as the future face of democracy: a case study of the 2011 Irish elections. European View, 10(1), 25–31.

5. Dijkstra, L., Poelman, H., & Rodríguez-Pose, A. (2020). The geography of EU discontent. Regional Studies, 54(6), 737–753.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3