Three-Point Iterated Interval Half-Cutting for Finding All Local Minima of Unknown Single-Variable Function

Author:

Romanuke Vadim1ORCID

Affiliation:

1. Vinnytsia Institute of Trade and Economics of State University of Trade and Economics , Vinnytsia , Ukraine

Abstract

Abstract A numerical method is suggested to find all local minima and the global minimum of an unknown single-variable function bounded on a given interval regardless of the interval length. The method has six inputs: three inputs defined straightforwardly and three inputs, which are adjustable. The endpoints of the initial interval and a formula for evaluating the single-variable function at any point of this interval are the straightforward inputs. The three adjustable inputs are a tolerance with the minimal and maximal numbers of subintervals. The tolerance is the secondary adjustable input. Having broken the initial interval into a set of subintervals, the three-point iterated half-cutting “gropes” around every local minimum by successively cutting off a half of the subinterval or dividing the subinterval in two. A range of subinterval sets defined by the minimal and maximal numbers of subintervals is covered by running the threepoint half-cutting on every set of subintervals. As a set of values of currently found local minima points changes less than by the tolerance, the set of local minimum points and the respective set of function values at these points are returned. The presented approach is applicable to whichever task of finding local extrema is. If primarily the purpose is to find all local maxima or the global maximum of the function, the presented approach is applied to the function taken with the negative sign. The presented approach is a significant and important contribution to the field of numerical estimation and approximate analysis. Although the method does not assure obtaining all local minima (or maxima) for any function, setting appropriate minimal and maximal numbers of subintervals makes missing some minima (or maxima) very unlikely.

Publisher

Riga Technical University

Subject

General Medicine

Reference24 articles.

1. [1] M. L. Lial, R. N. Greenwell, and N. P. Ritchey, Calculus with Applications (11th edition). Pearson, 2016.

2. [2] I. Zelinka, V. Snášel, A. Abraham, Eds. Handbook of Optimization. From Classical to Modern Approach. Springer-Verlag Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-30504-710.1007/978-3-642-30504-7

3. [3] S. A. Vavasis, “Complexity issues in global optimization: A survey,” in Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 2, R. Horst and P. M. Pardalos, Eds. Springer, Boston, MA, 1995, pp. 27–41. https://doi.org/10.1007/978-1-4615-2025-2_210.1007/978-1-4615-2025-2_2

4. [4] J. Stewart, Calculus: Early Transcendentals (6th edition). Brooks/Cole, 2008.

5. [5] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis. Springer, 1965. https://doi.org/10.1007/978-3-642-88044-510.1007/978-3-642-88044-5

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DBSCAN Speedup for Time-Serpentine Datasets;Applied Computer Systems;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3