Affiliation:
1. Department of Geography Education , Universitas Negeri Malang , Malang , Indonesia
2. Department of Geography Education , Universitas Prof Dr Hazairin SH , Bengkulu , Indonesia
Abstract
Abstract
There have been many studies on rainfall erosivity and erosivity density (ED). However, it was not widely developed in Indonesia as a tropical country and has unique precipitation patterns. They are indicators for assessing the potential risk of soil erosion. The Air Bengkulu Watershed is undergoing severe land degradation due to soil erosion. This study aimed to analyze spatial-temporal in rainfall erosivity and ED based on monthly rainfall data (mm). The data used consisted of 19 weather stations during the period 2006–2020 and which are sparsely distributed over the watershed. The analysis was done by using Arnold's equation. Then, the trend was tested using parametric and non-parametric statistics, and analysed with linear regression equation, and Spearman's Rho and Mann Kendall's tests. The spatial distribution of both algorithms was analysed using the inverse distance weighted (IDW) method based on the geographic information system (GIS). Unlike previous research findings, The long-term average monthly rainfall erosivity and ED revealed a general increase and decreasing trend, whereas it was found to be non-significant when both indices were observed. However, these results indicate a range from 840.94 MJ · mm−1 · ha−1 · h−1 · a−1, 552.42 MJ · mm−1 · ha−1 · h−1 · a−1 to 472.09 MJ · mm−1 · ha−1 · h−1 · a−1 in that November month followed by December and April are the most susceptible months for soil erosion. Therefore, The upstream area of the region shows that various anthropogenic activities must be managed properly by taking into account the rainfall erosivity on the environment and that more stringent measures should be followed in soil and water conservation activities.
Subject
General Earth and Planetary Sciences
Reference69 articles.
1. Andriansyah O., Mustikasari R., 2011. Gambaran Umum Permasalahan Pengelolaan Air: DAS Air Bengkulu. Telepak, Bengkulu. Online: www.telapak.org.
2. Andriyani I., Jourdain D., Lidon B., Soni P., Kartiwa B., 2017. Upland farming system erosion yields and their constraints to change for sustainable agricultural conservation practices: a case study of Land Use and Land Cover (LULC) change in Indonesia. Land Degradation and Development 28(2): 421–430. DOI
10.1002/ldr.2598.
3. Arnoldus H.M.J., Boodt M.D., Gabriels D., 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. In: Assessment of erosion, 6th ed. John Wiley and Sons Ltd, UK: 127–132.
4. Arsyad S., 2012. Konservasi Tanah dan Air (Edisi Kedu). IPB Press, Bogor.
5. Asdak C., 2014. Hidrologi dan Pengelolaan Daerah Aliran Sungai. UGM Perss, Yogyakarta.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献