Affiliation:
1. Department of Mathematics , University of Tunis El Manar, Campus of University 2092 Tunis El Manar , Tunisia .
Abstract
Abstract
We consider the existence of solutions of the following weighted problem:
{
L
:
=
-
d
i
v
(
ρ
(
x
)
|
∇
u
|
N
-
2
∇
u
)
+
ξ
(
x
)
|
u
|
N
-
2
u
=
f
(
x
,
u
)
i
n
B
u
>
0
i
n
B
u
=
0
o
n
∂
B
,
\left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right.
where B is the unit ball of ℝ
N
, N #62; 2,
ρ
(
x
)
=
(
log
e
|
x
|
)
N
-
1
\rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}}
the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.
Reference40 articles.
1. [1] A. Adimurthi, Existence results for the semilinear Dirichlet problem with critical growth for the n-Laplacian, Houst. J. Math. 7 (1991), 285-298.
2. [2] Adimurthi and K. Sandeep, A Singular Moser-Trudinger Embedding and Its Applications, Nonlinear Differential Equations and Applications, 13 (2007), 585-603.10.1007/s00030-006-4025-9
3. [3] S. Alama, Y. Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 89-115.10.1016/0022-0396(92)90145-D
4. [4] C. O. Alves, L. R. de Freitas, Multiplicity of nonradial solutions for a class of quasilinear equations on annulus with exponential critical growth, Topol. Methods Nonlinear Anal. 39 (2012), 243-262.
5. [5] C. O. Alves, J. M. do, O. H. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in ℝ2 involving critical growth, Nonlinear Anal. 56 (2004), 781-791.10.1016/j.na.2003.06.003
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献