Meloidogyne enterolobii-induced Changes in Guava Root Exudates Are Associated With Root Rotting Caused by Neocosmospora falciformis

Author:

Souza Ricardo M.1ORCID,Oliveira Denilson F.2ORCID,Gomes Vicente M.1ORCID,Viana Abraão J. S.2,Silva Geraldo H.3ORCID,Machado Alan R. T.4ORCID

Affiliation:

1. Departamento de Entomologia e Fitopatologia , Universidade Estadual do Norte Fluminense Darcy Ribeiro , Campos dos Goytacazes , Brazil

2. Departamento de Química , Universidade Federal de Lavras , Lavras , Brazil

3. Laboratório de Desenvolvimento de Agroquímicos Naturais , Universidade Federal de Viçosa , Rio Paranaíba , Brazil

4. Departamento de Ciências Exatas , Universidade do Estado de Minas Gerais , João Monlevade , Brazil

Abstract

Abstract Despite the worldwide importance of disease complexes involving root-feeding nematodes and soilborne fungi, there have been few in-depth studies on how these organisms interact at the molecular level. Previous studies of guava decline have shown that root exudates from Meloidogyne enterolobii-parasitized guava plants (NP plants), but not from nematode-free plants (NF plants), enable the fungus Neocosmospora falciformis to rot guava roots, leading to plant death. To further characterize this interaction, NP and NF root exudates were lyophilized; extracted with distinct solvents; quantified regarding amino acids, soluble carbohydrates, sucrose, phenols, and alkaloids; and submitted to a bioassay to determine their ability to enable N. falciformis to rot the guava seedlings’ roots. NP root exudates were richer than NF root exudates in amino acids, carbohydrates, and sucrose. Only the fractions NP-03 and NP-04 enabled fungal root rotting. NP-03 was then sequentially fractionated through chromatographic silica columns. At each step, the main fractions were reassessed in bioassay. The final fraction that enabled fungal root rotting was submitted to analysis using high performance liquid chromatography, nuclear magnetic resonance, mass spectrometry, energy-dispersive X-ray fluorescence, and computational calculations, leading to the identification of 1,5-dinitrobiuret as the predominant substance. In conclusion, parasitism by M. enterolobii causes an enrichment of guava root exudates that likely favors microorganisms capable of producing 1,5-dinitrobiuret in the rhizosphere. The accumulation of biuret, a known phytotoxic substance, possibly hampers root physiology and the innate immunity of guava to N. falciformis.

Publisher

Walter de Gruyter GmbH

Reference78 articles.

1. Abawi, G. S., and Chen, J. 1998. Concomitant pathogen and pest interactions. Pp. 135–158 in K. R. Barker, G. A. Pederson, G. L. Windham, and J. M. Bartels, eds. Plant and nematode interactions. Agronomy monograph 36. Madison: American Society of Agronomy, Crop Science Society of America and Soil Science Society of America.

2. Anonymous. 1996. Official methods of analysis. Arlington: Association of Official Analytical Chemists.

3. Aprà, E., Bylaska, E. J., de Jong, W. A, Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J. O., Dunning Jr. T. H., Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, A., Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y., and Harrison, R. J. 2020. NWChem: past, present, and future. The Journal of Chemical Physics 152: 184102. doi/10.1063/5.0004997.

4. Aukema, K. G., Tassoulas, L. J., Robinson, S. L., Konopatski, J. F., Bygd, M. D., and Wackett, L. P. 2020. Cyanuric acid biodegradation via biuret: physiology, taxonomy, and geospatial distribution. Applied and Environmental Microbiology 86: e01964–19. doi/10.1128/aem.01964-19.

5. Back, M. A., Haydock, P. P. J., and Jenkinson, P. 2002. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology 51: 683–697. doi/10.1046/j.1365-3059.2002.00785.x.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3