On unique and non-unique fixed point in parametric N b metric spaces with application

Author:

Petwal Sudheer1,Tomar Anita2,Joshi Meena3

Affiliation:

1. A.P.B. Government Post Graduate College Agastyamuni , Uttarakhand - , India

2. Pt. L. M. S. Campus, Sridev Suman Uttarakhand University , Rishikesh - , India

3. S. S. J. Campus, Soban Singh Jeena, Uttarakhand University , Almora - , India

Abstract

Abstract We propose 𝒮𝒜, η−𝒮𝒜, η−𝒮 𝒜min, and 𝒮𝒜η,δ,ζ−contractions and notions of η−admissibility type b and η b −regularity in parametric N b -metric spaces to determine a unique fixed point, a unique fixed circle, and a greatest fixed disc. Further, we investigate the geometry of non-unique fixed points of a self mapping and demonstrate by illustrative examples that a circle or a disc in parametric N b −metric space is not necessarily the same as a circle or a disc in a Euclidean space. Obtained outcomes are extensions, unifications, improvements, and generalizations of some of the well-known previous results. We provide non-trivial illustrations to exhibit the importance of our explorations. Towards the end, we resolve the system of linear equations to demonstrate the significance of our contractions in parametric N b −metric space.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference30 articles.

1. [1] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional analysis, 30 (Russian), Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, (1989), 26–37.

2. [2] S. Banach, Surles opérations dans les ensembles abstraits etleur applicationaux équations intégrales, Fundamenta Mathematicae, 3, (1922), 133181.10.4064/fm-3-1-133-181

3. [3] L. B. Ćirić, Generalised contractions and fixed-point theorems, Publ. Inst. Math., 12 (26), (1971), 9–26.

4. [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform., Univ. Ostrav, 1, (1993), 5–11.

5. [5] M. Fréchet, Sur quelques points du calcul fonctionnel, palemo, (30 via Ruggiero), (1906).10.1007/BF03018603

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3