On the Computation of the GCD of 2-D Polynomials

Author:

Tzekis Panagiotis,Karampetakis Nicholas,Terzidis Haralambos

Abstract

On the Computation of the GCD of 2-D PolynomialsThe main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based on DFT techniques. The whole theory is implemented via illustrative examples.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference9 articles.

1. On the computation of the minimal polynomial of a polynomial matrix;N. Karampetakis;International Journal of Applied Mathematics and Computer Science,2005

2. System theoretic based characterisation and computation of the least common multiple of a set of polynomials;N. Karcanias;Linear Algebra and Its Applications,2004

3. Numerical computation of the least common multiple of a set of polynomials;N. Karcanias;Reliable Computing,2000

4. A matrix pencil based numerical method for the computation of the GCD of polynomials;N. Karcanias;IEEE Transactions on Automatic Control,1994

5. Computation of the GCD of polynomials using Gaussian transformation and shifting;M. Mitrouli;International Journal of Control,1993

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximate GCD of several multivariate sparse polynomials based on SLRA interpolation;Journal of Symbolic Computation;2025-03

2. SLRA Interpolation for Approximate GCD of Several Multivariate Polynomials;Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation;2023-07-24

3. Calculation of Determinant of a two-variable Polynomial Matrix in Complex Basis;WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL;2022-09-23

4. Optimal Number of Required Points for Evaluation - Interpolation Technique in Complex Basis;WSEAS TRANSACTIONS ON MATHEMATICS;2022-06-08

5. On the computation of the inverse of a two-variable polynomial matrix by interpolation;Multidimensional Systems and Signal Processing;2010-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3