Urban Compression Patterns: Fractals and Non-Euclidean Geometries - Inventory and Prospect

Author:

Griffith Daniel1,Arlinghaus Sandra2

Affiliation:

1. School of Economic, Political and Policy Sciences, University of Texas at Dallas, USA

2. School of Natural Resources and Environment, University of Michigan, USA

Abstract

Urban Compression Patterns: Fractals and Non-Euclidean Geometries - Inventory and Prospect Urban growth and fractality is a topic that opens an entrance for a range of radical ideas: from the theoretical to the practical, and back again. We begin with a brief inventory of related ideas from the past, and proceed to one specific application of fractals in the non-Euclidean geometry of Manhattan space. We initialize our discussion by inventorying selected existing knowledge about fractals and urban areas, and then presenting empirical evidence about the geometry of and movement in physical urban space. Selected empirical analyses of minimum path distances between places in urban space indicate that its metric is best described by a general Minkowskian one whose parameters are between those for Manhattan and Euclidean space. Separate analyses relate these results to the fractal dimensions of the underlying physical spaces. One principal implication is that theoretical, as well as applied, ideas based upon fractals and the Manhattan distance metric should be illuminating in a variety of contexts. These specific analyses are the focus of this paper, leading a reader through analytical approaches to fractal metrics in Manhattan geometry. Consequently, they suggest metrics for evaluating urban network densities as these represent compression of human activity. Because geodesics are not unique in Manhattan geometry, that geometry offers a better fit to human activity than do Euclidean tools with their unique geodesic activities: human activity often moves along different paths to get from one place to another. Real-world evidence motivates our specific application, although an interested reader may find the subsequent "prospect" section of value in suggesting a variety of future research topics that are currently in progress. Does "network science" embrace tools such as these for network compression as it might link to urban function and form? Stay tuned for forthcoming work in Geographical Analysis.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3