An Experimental Optimization Research of Methyl and Ethyl Esters Production from Safflower Oil

Author:

Gulum Mert1,Bilgin Atilla1

Affiliation:

1. Mechanical Engineering Department, Karadeniz Technical University, Trabzon , Turkey

Abstract

Abstract Nowadays, biodiesel is drawing attention as a renewable and clean alternative to fossil diesel fuel because of numerous advantages such as higher flash point, cetane number and density. However, the high viscosity of biodiesel is one of the critical shortcomings and it causes poor atomization, decrease in engine performance and increase in exhaust emissions. To overcome this shortcoming, in this study, the effects of main transesterification reaction variables on the viscosities of produced safflower oil methyl and ethyl esters (biodiesel) were investigated as a full factorial experimental design, and optimum parametric values giving the lowest viscosity were determined. Density and viscosity were measured according to ISO 4787 and DIN 53015 standards. Sodium ethoxide (C2H5ONa) was utilized as a catalyst, and 90 and 120 minutes of reaction duration were kept constant for methanolysis and ethanolysis reactions. According to the results, the optimal reaction parameters were determined as: 0.75 % catalyst concentration, 8:1 alcohol to oil molar ratio and 56 °C reaction temperature for methanolysis; 1.00 % catalyst concentration, 12:1 alcohol to oil molar ratio and 70 °C reaction temperature for ethanolysis. Based on the reaction parameters, the methyl and ethyl esters were produced with the lowest viscosities of 3.989 mm2/s and 4.393 mm2/s, respectively. In the light of results obtained in this study, similar studies on production of biodiesels from different oils and alcohols can be performed.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3