A Sustainability-Based Approach for Geotechnical Infrastructure

Author:

Pettinaroli Andrea1,Susani Stefano12,Castellanza Riccardo1,Collina Elena Maria13,Pierani Matteo2,Paoli Riccardo4,Romagnoli Francesco4

Affiliation:

1. Università degli Studi di Milano-Bicocca , DISAT, Piazza della Scienza , 1, 2026 Milano , Italy

2. Tecne Gruppo Autostrade per l’Italia S.p.A , Viale Fulvio Testi, 280, 20126 Milano , Italy

3. 1 Studio Ing. Andrea Pettinaroli s.r.l. , Via M. Macchi, 58, 20124 Milano , Italy

4. Riga Technical University , Institute of Energy Systems and Environment, Faculty of Electrical and Environmental Engineering , 12/1 Azenes iela, Riga, LV1048 , Latvia

Abstract

Abstract Urban growth needs large cities, and the current emphasis on landscape preservation makes using underground spaces an opportunity and a significant necessity. However, underground construction techniques significantly impact the sustainability of the built environment, including infrastructure systems and their entire supply chains. Nowadays, there is a shortage of quantitative methodologies to assess and measure the sustainability of construction and underground building processes towards the three sustainable pillars, i.e. environmental, social, and economic. Thus, this study aims to cover this gap by explaining how to appropriately incorporate sustainability goals into geotechnical projects to address measure-driven strategies and eco-design-based solutions. This study illustrates a novel methodology based on the Life Cycle Thinking approach, with an emphasis on geotechnical ground improvement techniques. The proposed method incorporates the concept of the EU Taxonomy, following the EU Green Deal, with the Envision framework to guide decision-makers toward a more sustainable, resilient, and equitable infrastructure design. The proposed method will incorporate a cradle-to-site Life Cycle Assessment perspective, improving the quantitative estimation of the environmental performance of construction processes and providing guidelines to systematically assess the sustainability of geotechnical infrastructures.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3