Salt tolerance of Cressa cretica and its rhizosphere microbiota

Author:

Etemadi Nematollah,Müller Maria,Etemadi Mohammad,Brandón María Gómez,Ascher-Jenull Judith,Insam HeribertORCID

Abstract

AbstractThe dwarf shrub Cressa cretica is a thermocosmopolitan halophilic species. Different mechanisms confer salt stress tolerance such as tissue and osmotic tolerance and ion exclusion, as well as the associated microbiota. The aims were (i) to investigate the best conditions for C. cretica seed germination and to examine the tolerance of germinated seeds and seedlings to different salt concentrations and (ii) to characterize the rhizosphere and bulk soil microbiota. Germination and growth experiments were conducted to address plant salt tolerance, and with Illumina sequencing the microbiota of rhizosphere and bulk soil was investigated. While high salt concentrations (600, 800, and 1000 mM NaCl) inhibited C.cretica seed germination, recovery of ungerminated seeds under non-saline conditions was high, indicating osmotic rather than toxic effects of high salt concentrations. The microbiota found in rhizosphere and bulk soil showed high similarity with that found in previous studies on halophyte-associated microbiota, among the Planctomyces, Halomonas and Jeotgalibacillus. Concluding, salt stress responses on the plant level were shown, as has the involvement of associated halotolerant bacteria. Still, the potential role for mitigating saline stress by the bacterial associates of C. cretica, most of them microbial dark matter, will have to be investigated, as will the contributions of archaea and fungi.

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3