Stable carbon isotope analyses offer insights into net carbon degradation of maize silages in anaerobic batch fermentations

Author:

Einfalt DanielORCID,Werth Martin,Schropp Daniel,Kazda Marian

Abstract

AbstractCarbon degradation indicates the efficiency of anaerobic digestion processes. Common carbon degradation determination methods define gross carbon degradation (C deggross) of substrate and inoculum inseparably. The aim of this study was to test an isotope-based method defining solely substrate-based net carbon degradation (C degnet) on maize silage. As the natural abundance of stable isotopes in agricultural substrates vary, the method’s applicability was tested on (i) different maize silages sampled from agricultural farms, (ii) maize silage in fresh (MSfresh) and impaired storage (MSimpaired) conditions.Experiments included six maize silages digested in a total of 19 lab-scale batch reactors, analyzed for digestion parameters, stable isotopes, gross and net carbon degradation. MSimpaired showed significantly different stable carbon isotope composition at the start of the experiments, compared to MSfresh. Both methods indicated quality losses in MSimpaired. Results showed significantly higher C degnet values, ranging from 58.4% to 86.5%, compared to deggross values, ranging from 23.1% to 48.7%. This indicated the applicability of an isotope-based method C degnet to assess net carbon degradation of maize silages more detailed by excluding the masking effect of the inoculum. The isotope-based net carbon degradation method was found applicable on maize silages from (i) different farms and (ii) in different storage qualities.

Funder

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3