Optimizing Team Sport Training With Multi-Objective Evolutionary Computation

Author:

Connor Mark12,Faganan David2,Watters Barry3,McCaffery Fergal234,O’Neill Michael12

Affiliation:

1. Natural Computing Research And Applications Group, School of Business , University College Dublin , Ireland .

2. Lero - The Irish Software Research Centre .

3. STATSports Group, Newry , Co.Down, N.Ireland .

4. Dundalk Institute of Technology , Dublin Road, Co. Louth , Ireland .

Abstract

Abstract This research introduces a new novel method for mathematically optimizing team sport training models to enhance two measures of athletic performance using an evolutionary computation based approach. A common training load model, consisting of daily training load prescriptions, was optimized using an evolutionary multi-objective algorithm to produce improvements in the mean match-day running intensity across a competitive season. The optimized training model was then compared to real-world observed training and performance data to assess the potential improvements in performance that could be achieved. The results demonstrated that it is possible to increase and maintain a stable level of match-day running performance across a competitive season whilst adhering to model-based and real-world constraints, using an intelligently optimized training design compared a to standard human design, across multiple performance criteria (BF+0 = 5651, BF+0 = 11803). This work demonstrates the value of evolutionary algorithms to design and optimize team sport training models and provides support staff with an effective decision support system to plan and prescribe optimal strategies to enhance in-season athlete performance.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Algorithms;Sports Technology;2024

2. Evolutionäre Algorithmen;Sporttechnologie;2024

3. Meta-heuristics meet sports: a systematic review from the viewpoint of nature inspired algorithms;International Journal of Computer Science in Sport;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3