Opportunities for carbon sequestration in intensive soft fruit production systems

Author:

Lukac Martin12

Affiliation:

1. University of Reading, School of Agriculture , Policy and Development , United Kingdom

2. Czech University of Life Science Prague , Faculty of Forestry and Wood Sciences , Praha , Czech Republic

Abstract

Abstract The historical contribution of agriculture to human-induced climate change is indisputable; the removal of natural vegetation and soil cultivation to feed the growing human population has resulted in a substantial carbon transfer to the atmosphere. While maintaining their food production capacity, soft fruit production systems now have an opportunity to utilise a recent technology change to enhance their carbon sequestration capacity. We use an example of a farm in South-East England to illustrate how the soft fruit crop production system can be optimised for carbon storage. We performed an audit of carbon stocks in the soil and tree biomass and show that it is imperative to plan crop rotation to establish (semi) permanent inter-row strips that will remain in situ even if the main crop is replaced. These strips should be covered with grassland vegetation, preferable with deeper rooting grass species mixed with species supporting nitrogen fixation. Finally, grassland mowing cuttings should be left in situ and hedgerows and tree windbreaks should be expanded across the farm. Modern soft fruit production systems can enhance their carbon storage while maintaining commercially relevant levels of productivity.

Publisher

Walter de Gruyter GmbH

Reference18 articles.

1. Agostini, F., Gregory, A. S., & Richter, G. M. (2015). Carbon sequestration by perennial energy crops: is the jury still out? Bioenergy research, 8(3), 1057–1080. https://doi.org/10.1007/s12155-014-9571-010.1007/s12155-014-9571-0473260326855689

2. Błonska, E., Lasota, J., da Silva, G. R. V., Vanguelova, E., Ashwood, F., Tibbett, M., Watts, K., & Lukac, M. (2020). Soil organic matter stabilization and carbon-cycling enzyme activity are affected by land management. Annals of Forest Research, 63(1), 71–86. https://doi.org/10.15287/afr.2019.1837

3. Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., & Reichstein, M. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706. https://doi.org/10.1111/j.1365-2486.2006.01305.x10.1111/j.1365-2486.2006.01305.x

4. Briedis, C., de Moraes Sá, J. C., Caires, E. F., de Fátima Navarro, J., Inagaki, T. M., Boer, A., Neto, C. Q., de Oliveira Ferreira, A., Canalli, L. B., & Dos Santos, J. B. (2012). Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma, 170, 80–88. https://doi.org/10.1016/j.geoderma.2011.10.01110.1016/j.geoderma.2011.10.011

5. Cheng, W. (1999). Rhizosphere feedbacks in elevated CO2. Tree physiology, 19(4–5), 313–320. https://doi.org/10.1093/treephys/19.4-5.31310.1093/treephys/19.4-5.31312651574

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3