ERN1 dependent impact of glucose and glutamine deprivations on PBX3, PBXIP1, PAX6, MEIS1, and MEIS2 genes expression in U87 glioma cells
Author:
Krasnytska Dariia O.1, Viletska Yuliia M.1, Minchenko Dmytro O.12, Khita Olena O.1, Tsymbal Dariia O.1, Cherednychenko Anastasiia A.1, Kozynkevych Halyna E.2, Oksiom Nataliia S.1, Minchenko Oleksandr H.1
Affiliation:
1. Department of Molecular Biology , Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine , Kyiv , Ukraine 2. Department of Pediatrics and Department of Surgery , National Bohomolets Medical University , Kyiv , Ukraine
Abstract
Abstract
Objective. Homeobox genes play a fundamental role in the embryogenesis, but some of them have been linked to oncogenesis. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of homeobox genes such as PAX6 (paired box 6), PBX3 (PBX homeobox 3), PBXIP1 (PBX homeobox interacting protein 1), MEIS1 (MEIS homeobox 1), and MEIS2 in ERN1 knockdown U87 glioma cells with the intent to reveal the role of ERN1 (endoplasmic reticulum to nucleus signaling 1) signaling pathway on the endoplasmic reticulum stress dependent regulation of homeobox genes.
Methods. The control (transfected by empty vector) and ERN1 knockdown (transfected by dominant-negative ERN1) U87 glioma cells were exposed to glucose and glutamine deprivations for 24 h. The cells RNA was extracted and reverse transcribed. The expression level of PAX6, PBX3, PBXIP1, MEIS1, and MEIS2 genes was evaluated by a real-time quantitative polymerase chain reaction analysis and normalized to ACTB.
Results. It was found that glucose deprivation down-regulated the expression level of PAX6, MEIS1, and MEIS2 genes in control glioma cells, but did not significantly alter PBX3 and PBXIP1 genes expression. At the same time, ERN1 knockdown significantly modified the sensitivity of all studied genes to glucose deprivation. Other changes in gene expression were detected in control glioma cells under the glutamine deprivation. The expression of PBX3 and MEIS2 genes was down- while PAX6 and PBXIP1 genes up-regulated. Furthermore, ERN1 knockdown significantly modified the effect of glutamine deprivation on the majority of studied genes expression in U87 glioma cells.
Conclusion. The results of the present study demonstrate that the exposure of U87 glioma cells under glucose and glutamine deprivations affected the expression of the majority of the studied homeobox genes and that the sensitivity of PAX6, PBX3, PBXIP1, MEIS1, and MEIS2 genes expression under these experimental conditions is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling.
Publisher
Walter de Gruyter GmbH
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Reference56 articles.
1. Alimohammadi E, Bagheri SR, Salehi AS, Rizevandi P, Rezaie Z, Abdi A. Prognostic factors in patients with glioblastoma multiforme: focus on the pathologic variants. Acta Neurol Belg 120, 1341–1350, 2020. 2. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luis A, McCarthy N, Montibeller L, More S, Papaioannou A, Puschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Munoz-Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 286, 241–278, 2019. 3. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A 107, 15553–15558, 2010. 4. Auf G, Jabouille A, Delugin M, Guerit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer 13, 597, 2013. 5. Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, Kadota S, Esumi H. Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res 66, 1751–1757, 2006.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|