Facile microwave-assisted synthesis of Al:Mn co-doped PbI2 nanosheets: structural, vibrational, morphological, dielectric and radiation activity studies

Author:

Yahia I.S.12,Shkir Mohd.1,Ganesh V.1,Abutalib M.M.3,Zahran H.Y.12,Alfaify S.1

Affiliation:

1. Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha , Saudi Arabia

2. Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo , Egypt

3. Physics Department, Faculty of Science-AL Faisaliah, Campus, King Abdulaziz University, Jeddah , Saudi Arabia

Abstract

Abstract Herein, we report a successful development of nano-scale pure and Al and Mn co-doped PbI2 using facile microwaveassisted route. Structural study was done through X-ray diffraction analysis of grain size, dislocation density and lattice strain. The crystallite size was found to vary from 28 nm to 40 nm due to Al:Mn co-doping in PbI2. The presence of various vibrational modes was confirmed by FT-IR spectroscopy and red shifting was observed in peak positions compared to the bulk. Surface morphology, examined using a scanning electron microscope, confirmed the formation of single crystal nanosheets of a thickness in the range of 10 nm to 30 nm. The single crystal nanosheets were found to be transformed to large area nanosheets due to the doping. Enhancement in dielectric constant from ~7.5 to 11 was observed with increasing Al doping concentration. Linear attenuation coefficient was calculated and showed the enhancement of blocking gamma rays with increasing doping concentration. Its value was found to increase from 7.5 to 12.8 with the doping. The results suggest that the synthesized nanostructures can be used for detection and absorption of gamma rays emitted by 137Cs and 241Am sources.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3