Detection and elimination of signal errors due to unintentional movements in biomedical magnetic induction tomography spectroscopy (MITS)

Author:

Issa S.1,Scharfetter H.1

Affiliation:

1. Institute of Medical Engineering, Graz University of Technology , Graz , Austria

Abstract

Abstract In biomedical MITS, slight unintentional movements of the patient during measurement can contaminate the aimed images to a great extent. This study deals with measurement optimization in biomedical MITS through the detection of these unpredictable movements during measurement and the elimination of the resulting movement artefacts in the images to be reconstructed after measurement. The proposed detection and elimination (D&E) methodology requires marking the surface of the object under investigation with specific electromagnetically perturbing markers during multi-frame measurements. In addition to the active marker concept already published, a new much simpler passive marker concept is presented. Besides the biological signal caused by the object, the markers will perturb the primary magnetic field inducing their own signals. The markers' signals will be used for the detection of any unwanted object movements and the signal frames corrupted thereby. The corrupted signal frames will be then excluded from image reconstruction in order to prevent any movement artefacts from being imaged with the object. In order to assess the feasibility of the developed D&E technique, different experiments followed by image reconstruction and quantitative analysis were performed. Hereof, target movements were provoked during multifrequency, multiframe measurements in the β-dispersion frequency range on a saline phantom of physiological conductivity. The phantom was marked during measurement with either a small single-turn coil, an active marker, or a small soft-ferrite plate, a passive marker. After measurement, the erroneous phantom signals were corrected according to the suggested D&E strategy, and images of the phantom before and after correction were reconstructed. The corrected signals and images were then compared to the erroneous ones on the one hand, and to other true ones gained from reference measurements wherein no target movements were provoked on the other hand. The obtained qualitative and quantitative measurement and image reconstruction results showed that the erroneous phantom signals could be accurately corrected, and the movement artefacts could be totally eliminated, verifying the applicability of the novel D&E technique in measurement optimization in biomedical MITS and supporting the proposed aspects.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3