Attribute Selection for Stroke Prediction

Author:

Zdrodowska Małgorzata1

Affiliation:

1. Faculty of Mechanical Engineering, Department of Biocybernetics and Biomedical Engineering , Bialystok Technical University , ul. Wiejska 45C, 15-351 Bialystok , Poland

Abstract

Abstract Stroke is the third most common cause of death and the most common cause of long-term disability among adults around theworld. Therefore, stroke prediction and diagnosis is a very important issue. Data mining techniques come in handy to help determine the correlations between individual patient characterisation data, that is, extract from the medical information system the knowledge necessary to predict and treat various diseases. The study analysed the data of patients with stroke using eight known classification algorithms (J48 (C4.5), CART, PART, naive Bayes classifier, Random Forest, Supporting Vector Machine and neural networks Multilayer Perceptron), which allowed to build an exploration model given with an accuracy of over 88%. The potential features of patients, which may be factors that increase the risk of stroke, were also indicated.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based patient classification system for adults with stroke: A systematic review;Chronic Illness;2021-12-13

2. Predictive Clustering Learning Algorithms for Stroke Patients Discharge Planning;Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies;2021

3. Evaluation of ECG Features for the Classification of Post-Stroke Survivors with a Diagnostic Approach;Applied Sciences;2020-12-28

4. Predictive Clustering Learning Algorithms for Stroke Patients Discharge Planning;Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1;2020-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3