Application of Möbius coordinate transformation in evaluating Newton's integral

Author:

Tenzer Robert,Gladkikh Vladislav

Abstract

Application of Möbius coordinate transformation in evaluating Newton's integralWe propose a numerical scheme which efficiently combines various existing methods of solving the Newton's volume integral. It utilises the analytical solution of Newton's integral for tesseroid in computing the near-zone contribution to gravitational field quantities (potential and its first radial derivative). The far-zone gravitational contribution is computed using the expressions derived based on applying Molodensky's truncation coefficients to a spectral representation of Newton's integral. The weak singularity of Newton's integral is treated analytically using formulas for the gravitational contribution of the cylindrical mass volume centered with respect to the observation point. All three solutions are defined and evaluated in the system of polar spherical coordinates. A conversion of the geographical to polar spherical coordinates of input data sets (digital terrain and density models) is based on the Möbius transformation with an enhanced integration grid resolution at vicinity of the observation point.

Publisher

Walter de Gruyter GmbH

Subject

Geophysics

Reference76 articles.

1. Anderson E. G., 1976: The effect of topography on solutions of Stokes' problem. Unisurv., S-14, Rep School of Surveying, University of New South Wales, Kensington, Australia.

2. Subcrustal density inhomogeneities of the Northern Euroasia as derived from the gravity data and isostatic models of the lithosphere;M. Artemjev;Tectonophysics,1994

3. Theoretical modeling of the magnetic and gravitational fields of an arbitrary shaped three dimensional body;C. Barnett;Geophysics,1976

4. Coordinate Transformation on a Sphere Using Conformal Mapping;M. Bentsen;Mon. Wea. Rev,1999

5. Auszug aus einem Schreiben des Herrn Prof;F. Bessel;Bessel. Zach's Monatliche Correspondenz zur Beförderung der Erd- und Himmelskunde,1813

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3