Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration

Author:

Ali Emad1,Hadj-Kali Mohamed1

Affiliation:

1. King Saud University , Chemical Engineering Department , Riyadh , Saudi Arabia 11421

Abstract

Abstract Styrene is a valuable commodity for polymer industries. The main route for producing styrene by dehydrogenation of ethylbenzene consumes a substantial amount of energy because of the use of high-temperature steam. In this work, the process energy requirements and recovery are studied using Exergy analysis and Heat Integration (HI) based on Pinch design method. The amount of steam plays a key role in the trade-off between Styrene yield and energy savings. Therefore, optimizing the operating conditions for energy reduction is infeasible. Heat integration indicated an insignificant reduction in the net energy demand and exergy losses, but 24% and 34% saving in external heating and cooling duties, respectively. When the required steam is generated by recovering the heat of the hot reactor effluent, a considerable saving in the net energy demand, as well as the heating and cooling utilities, can be achieved. Moreover, around 68% reduction in the exergy destruction is observed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Reference37 articles.

1. 1. Akpa, J.G. (2012). Simulation of an Isothermal Catalytic Membrane Reactor for the Dehydrogenation of Ethylbenzene, Chem. Proc. Enginee. Res. 3, 14–28, ISSN 2225–0913.

2. 2. Arno Behr. (2017). Styrene production from ethyl benzene, Retrieved July 13, 2017 from (http://www.tc.bci.tu-dortmund.de/Downloads/Praktika/tc30_styrene_english.pdf.

3. 3. Hermann, Ch., Quicker, E. & Dittmeyer, R. (1997). Mathematical simulation of catalytic dehydrogenation of ethylbenzene. J. Memb. Sci. 136, 161–172. DOI: 10.1016/S0376-7388(97)81990-4.10.1016/S0376-7388(97)81990-4

4. 4. PRWeb, World Styrene Market Dynamics Reviewed. Retrieved July, 13, 2017, from http://www.prweb.com/releases/2012/9/prweb9930130.htm.

5. 5. PRLog, Styrene Global Markets to 2020. Retrieved July, 13, 2017, from http://www.prlog.org/11727607-styrene-globalmarkets-to-2020-substitution-of-polystyrene-by-polypropylene.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3