Enhanced catalytic activity of zeolitic imidazolate frameworks (ZIF-8) polyelectrolyte complex composites membranes by laser etching

Author:

Yu Ting1,Kitiyanan Boonyarach12,Dubas Stephan Thierry12

Affiliation:

1. The Petroleum and Petrochemical College, Chulalongkorn University , Bangkok , Thailand

2. Center of Excellence on Petrochemical and Materials Technology , Bangkok , Thailand

Abstract

Abstract The effect of laser etching on the surface properties of composite polyelectrolyte complex (PEC) based membranes as mixed matrix membranes was studied. The PECs were prepared by the stoichiometric mixing of cationic PDDA (poly(diallyl dimethyl ammonium chloride)) and anionic PSS (poly(sodium 4-styrene sulfonate)) as polyelectrolytes with various contents of ZIF-8 as filler. Composite membranes usually display improved bulk properties depending on the nature of the filler, but the surface properties are often dictated by the matrix covering the surface. The PEC composite membranes were then subjected to laser etching, resulting in the enhanced exposure of embedded ZIF-8 particles within the PEC structure in an attempt to improve the surface properties of the composite membrane. The crystal structure, morphology, and distribution of zinc at the PECs surface, before and after laser etching, were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS), respectively. In order to evaluate the improvement of the surface properties of the laser-etched membranes, a model experiment involving a catalytic reaction was chosen. The pristine and laser treated surfaces were tested for their catalytic activity for the transesterification of triglycerides present in soybean oil with methanol at a temperature of 150°C. Interestingly, the laser-etched PECs displayed substantially enhanced activity compared to the original composite PEC membranes as a result of surface erosion. These results could be interesting for the future development of composite membranes with improved surface properties where the filler needs to expose the surface of the membranes.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3