Recycled Green PE Composites Reinforced with Woven and Randomly Arranged Sisal Fibres Processed by Hot Compression Moulding

Author:

De Castro Bruno Dorneles1,De Faria Paulo Eustáquio1,Vieira Luciano Machado Gomes1,Rubio Claudia Victoria Campos1,Maziero Rômulo1,De Matos Rodrigues Paulo César1,Rubio Juan Carlos Campos1

Affiliation:

1. Federal University of Minas Gerais , Brasil

Abstract

Abstract Green plastics are constantly being used to minimize the negative impacts of the polymers made of fossil fuels such as petroleum. Non-renewable petroleum-based products are employed in wide range of human activities, yet plastic waste accumulation represents a serious issue for the environment (Mohd Rafee et al., 2019). On the other hand, the use of natural fibres in composite materials, such as sisal fibres, in substitution for synthetic fibres, has increased considerably. The aim of this study was to develop a low-cost manufacturing process of composites with reuse of polyethylene bags made of sugarcane ethanol (green polyethylene) reinforced with sisal fibres. The hot compression moulding (185 °C) was used to mould composite structural board. Tensile tests were conducted to evaluate the influence of the reinforcement configuration on the mechanical properties of the composites, considering two arrangements: woven fibres in (0°/90°) and randomly arranged. The results indicated that the use of woven sisal fibres in (0°/90°) as reinforcement of the green HDPE showed an increase in the tensile strength (33.30%) in contrast to the pure traditional HDPE. Randomly arranged sisal fibre-reinforced green HDPE composites showed higher modulus of elasticity than pure traditional HDPE (76.83%). Composites with woven sisal fibres showed higher values for tensile strength and ultimate strain, and lower modulus of elasticity than composites with randomly arranged sisal fibres. In addition, failure modes of the composites were observed. The results showed the viability of producing these composites by the developed equipment and the potential use of these materials as structural components.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Waste Management and Disposal,Agronomy and Crop Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3