Some inequalities for operator monotone functions

Author:

Dragomir Silvestru Sever1

Affiliation:

1. Mathematics, College of Engineering & Science , Victoria University , PO Box 14428 , Melbourne City , MC 8001 , Australia . and DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics , University of the Witwatersrand , Johannesburg , South Africa .

Abstract

Abstract In this paper we show that, if that the function f : [0, ∞) → 𝔾 is operator monotone in [0, ∞) then there exist b ≥ 0 and a positive measure m on [0, ∞) such that [ f ( B ) - f ( A ) ] ( B - A ) = = b ( B - A ) 2 + 0 s 2 [ 0 1 [ ( ( 1 - t ) A + t B + s ) - 1 ( B - A ) ] 2 d t ] d m ( s ) \matrix{ {\left[ {f\left( B \right) - f\left( A \right)} \right]\left( {B - A} \right) = } \hfill \cr { = b{{\left( {B - A} \right)}^2} + \int_0^\infty {{s^2}\left[ {\int_0^1 {{{\left[ {{{\left( {\left( {1 - t} \right)A + tB + s} \right)}^{ - 1}}\left( {B - A} \right)} \right]}^2}dt} } \right]dm\left( s \right)} } \hfill \cr } for all A, B > 0. Some necessary and sufficient conditions for the operators A, B > 0 such that the inequality f ( B ) B + f ( A ) A f ( A ) B + f ( B ) A f\left( B \right)B + f\left( A \right)A \ge f\left( A \right)B + f\left( B \right)A holds for any operator monotone function f on [0, ∞) are also given.

Publisher

Walter de Gruyter GmbH

Reference12 articles.

1. [1] M. Bagher Ghaemi, V. Kaleibary, Some inequalities involving operator monotone functions and operator means, Math. Inequal. Appl. 19 (2) (2016), 757–764.10.7153/mia-19-55

2. [2] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169, Springer-Verlag, New York, 1997, ISBN: 0-387-94846-5.

3. [3] M. Fujii, R. Nakamoto, Note on Dragomir’s theorems, Private note, preprint, RGMIA Res. Rep. Coll 23 (113) (2020), 4 pp.

4. [4] J. I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301–306.

5. [5] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra and its Applications 429 (2008), 972–980.10.1016/j.laa.2006.11.023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3