1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,V., Viégas F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. Baamonde, S., Cabana, M., Sillero N., Penedo, M.G., Naveira, H., Novo, J. 2019. Fully automatic multi-temporal land cover classification using Sentinel-2 image data. Procedia Computer Science 159, 650–657. DOI: 10.1016/j.procs.2019.09.220
3. Balázs, B., Bíró, T., Dyke, G., Singh, S.K., Szabó, Sz. 2018. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrological Sciences Journal 63(2), 269–284. DOI: 10.1080/02626667.2018.1425802
4. Breiman, L. 2001. Random Forests. Machine Learning 45(5–32). DOI:10.1023/A:1010933404324
5. Büttner, G., 2012. Guidelines for verification and enhancement of high resolution layers produced under GMES initial operations (GIO) Land monitoring 2011–2013. EEA Report