Machine Learning Techniques for Land Use/Land Cover Classification of Medium Resolution Optical Satellite Imagery Focusing on Temporary Inundated Areas

Author:

van Leeuwen Boudewijn1,Tobak Zalán1,Kovács Ferenc1

Affiliation:

1. Department of Physical Geography and Geoinformatics , University of Szeged , Egyetem u. 2-6, 6722 Szeged , Hungary

Abstract

Abstract Classification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.

Publisher

University of Szeged

Reference35 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,V., Viégas F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

2. Baamonde, S., Cabana, M., Sillero N., Penedo, M.G., Naveira, H., Novo, J. 2019. Fully automatic multi-temporal land cover classification using Sentinel-2 image data. Procedia Computer Science 159, 650–657. DOI: 10.1016/j.procs.2019.09.220

3. Balázs, B., Bíró, T., Dyke, G., Singh, S.K., Szabó, Sz. 2018. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrological Sciences Journal 63(2), 269–284. DOI: 10.1080/02626667.2018.1425802

4. Breiman, L. 2001. Random Forests. Machine Learning 45(5–32). DOI:10.1023/A:1010933404324

5. Büttner, G., 2012. Guidelines for verification and enhancement of high resolution layers produced under GMES initial operations (GIO) Land monitoring 2011–2013. EEA Report

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3