Effect on the splenocyte function of weaned piglets induced by continuous lipopolysaccharide injections

Author:

Yang Tingyu1ORCID,Zhao Guotong1ORCID,Zhu Wenlu1ORCID,Yu Wanting1ORCID,Jiang Yijie1ORCID,Zhou Yunxiao1ORCID,Li Yong1ORCID

Affiliation:

1. College of Animal Science and Technology, Jiangxi Agricultural University , Nanchang , Jiangxi , China

Abstract

Abstract Introduction When piglets are exposed to pathogens for a long period, the immune system organs, among them the spleen, play a major role in combating the stress caused by those pathogens. In the present study, the effect on splenocyte function was investigated in a model of weaned piglets in which stress was induced by multiple low doses of lipopolysaccharide (LPS). Material and Methods Forty-eight 28-day-old piglets were divided into two groups: the LPS group and the control group. During the experimental period of thirteen days, the LPS group was intraperitoneally injected with LPS (100 μg/kg) once per day, and the control group was injected with the same volume of 0.9% sterile saline. On the 1st, 5th, 9th and 13th days, the piglets’ spleens were collected for isolating splenocytes. The proliferation ability of splenocytes was evaluated by the cell-counting-kit 8 method. Flow cytometry was used to detect cell cycle stage and apoptosis, and the nitric oxide level of cell supernatant was also tested. Results In the experimental group, the proliferation ability of splenocytes was enhanced, the proportion of cells in the G0/G1 phase was smaller, and cells were promoted to the S and G2/M phases. Meanwhile, apoptosis was suppressed and nitric oxide release upregulated. The results were significantly different between the LPS group and the control group on the 5th and 9th days. Conclusion The difference between the results of one group and those of the other suggest that after the 5th LPS injection, multiple low doses of LPS activated splenocytes and restored the number of splenocytes, which maintained and possibly enhanced the regulation of the immune function of the spleen.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3