Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods

Author:

Bednarczyk Zbigniew1

Affiliation:

1. Institute of Opencast Mining, “Poltegor-Institute”, Wrocław

Abstract

Abstract This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which prevent landslides.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3