Computational Analysis of MHD Nanofluid Flow Across a Heated Square Cylinder with Heat Transfer and Entropy Generation

Author:

Sharma Madhu1ORCID,Sharma Bhupendra K.2ORCID,Kumawat Chandan3ORCID,Jalan Arun K.4ORCID,Radwan Neyara5ORCID

Affiliation:

1. Department of Bioscience, CASH , Mody University of Science & Technology , Lakshmangarh, Rajasthan , India

2. Department of Mathematics , Birla Institute of Technology and Science , Pilani, Rajasthan , India

3. School of Computer Science and Artificial Intelligence , SR University , Warangal, Telangana , India

4. Department of Mechanical Engineering , Birla Institute of Technology and Science , Pilani, Rajasthan , India

5. Industrial Engineering Department , College of Applied Sciences, AL MAAREFA UNIVERSITY , Riyadh , Saudi Arabia ; Mechanical Department, Faculty of Engineering , Suez Canal University , El Salam District , Egypt

Abstract

Abstract The mixed convection heat transfer of nanofluid flow in a heated square cylinder under the influence of a magnetic field is considered in this paper. ANSYS FLUENT computational fluid dynamics (CFD) software with a finite volume approach is used to solve unsteady two-dimensional Navier-Stokes and energy equations. The numerical solutions for velocity, thermal conductivity, temperature, Nusselt number and the effect of the parameters have been obtained; the intensity of the magnetic field, Richardson number, nanoparticle volume fraction, magnetic field parameter and nanoparticle diameter have also been investigated. The results indicate that as the dimensions of nanoparticles decrease, there is an observed augmentation in heat transfer rates from the square cylinder for a fixed volume concentration. This increment in heat transfer rate becomes approximately 2.5%–5% when nanoparticle size decreases from 100 nm to 30 nm for various particle volume fractions. Moreover, the magnitude of the Nusselt number enhances with the increase in magnetic field intensity and has the opposite impact on the Richardson number. The findings of the present study bear substantial implications for diverse applications, particularly in the realm of thermal management systems, where optimising heat transfer is crucial for enhancing the efficiency of electronic devices, cooling systems and other technological advancements.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3