A Novel Analytical Method for the Exact Solution of the Fractional-Order Biological Population Model

Author:

Elzaki Tarig M.1ORCID,Mohamed Mohamed Z.23ORCID

Affiliation:

1. Mathematics Department, College of Sciences and Arts , Alkamel , University of Jeddah , Saudi Arabia

2. Mathematics Department , Academy of Engineering and Medical Sciences , Khartoum , Sudan

3. Mathematics Department , Prince Muqrin University , Almadinah Almunawwarah , Saudi Arabia

Abstract

Abstract In this research, we develop a new analytical technique based on the Elzaki transform (ET) to solve the fractional-order biological population model (FBPM) with initial and boundary conditions (ICs and BCs). This approach can be used to locate both the closed approximate solution and the exact solution of a differential equation. The usefulness and validity of this strategy for managing the solution of FBPM are demonstrated using a few real-world scenarios. The dependability of the suggested strategy is also shown using a table and a few graphs. The approximate solutions that were achieved and the convergence analysis are shown in numerical simulations in a range of fractional orders. From the numerical simulations, it can be seen that the population density increases with increasing fractional order, whereas the population density drops with decreasing fractional order.

Publisher

Walter de Gruyter GmbH

Reference28 articles.

1. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier. San Diego. 2006.

2. Momani S, Shawagfeh NT. Decomposition method for solving fractional Riccati differential equations. Appl.Math. Comput. 2006; 182:1083-1092.

3. Gejji VD, Jafari H. Solving a multi-order fractional differential equation, Appl. Math. Comput. 2007;189:541-548.

4. Hilal EMA, Elzaki TM. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method, Journal of Function Spaces. 2014; 1-5. http://dx.doi.org/10.1155/2014/790714.

5. Elzaki TM, Biazar J. Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations. World Applied Sciences Journal. DOI: 10.5829/idosi.wasj.2013.24.07.1041

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3