Heat-induced alterations in moisture-dependent repellency of water-repellent forest soils: A laboratory approach with Japanese Andosols

Author:

Perera H.T.M.1,Mori Yasushi2,Maeda Morihiro2,Leelamanie D.A.L.1

Affiliation:

1. Department of Soil Science, Faculty of Agriculture , University of Ruhuna , Mapalana, Kamburupitiya 81100 , Sri Lanka .

2. Graduate School of Environmental and Life Science , Okayama University , 3-1-1, Tsushima-Naka, Kita-Ku , Okayama , Japan .

Abstract

Abstract Soil water repellency (SWR) is a phenomenon that prevents the spontaneous wetting of numerous forest soils. It is a moisture-dependent characteristic, which disappears when soil moisture reaches near saturation. The heat generated during forest fires affects soil characteristics including SWR. The possibility of heat influencing moisture-dependent repellency (MDR) is not well understood. The present study aimed to investigate the effects of different heating temperatures (HT) and exposure durations (ED) on MDR using water-repellent Japanese Cedar (CED) and Japanese Cypress (CYP) forest soils. Soil samples collected from 0–5 cm depth were exposed to heat separately at 50, 100, and 150 °C (H T) for 1 h and 2 h durations (E D). The MDR of heated and non-heated soils was determined using the water drop penetration time (WDPT) test in a drying process. During the drying process of the tested soils, SWR appeared and then increased with drying to reach an extreme level (WDPT ≥3600 s) that persisted for a range of decreasing moisture contents, and declined to be non-repellent again (WDPT = 0 s). The critical moisture content at which soils become water-repellent with drying (CMC), the highest and the lowest moisture contents when soils showed maximum SWR (HMCmax and LMCmax, respectively), and the integrated area below the MDR curve (SWR) decreased with increasing HT in both CED and CYP soils. The moisture content at which soils become non-repellent again during drying, MCNR, was independent of the type of soil and heat treatment. The range of moisture contents between HMCmax and LMCmax, where soils show maximum SWR during drying, decreased with increasing HT, from 50 to 150 °C in CED and from 100–150 °C in CYP. The SWR showed strong positive linear correlations with CMC and HMCmax. The heat generated during wildfires can alter the MDR and all the related repellency parameters of water-repellent forest soils. SWR prevails over a narrower range of moisture contents in heated soil compared with non-heated soils. Further investigations with higher temperature levels using different soil types would be important for a comprehensive understanding of the heat impacts on MDR.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3