Dynamical bias correction procedure to improve global gridded daily streamflow data for local application in the Upper Blue Nile basin

Author:

Lakew Haileyesus Belay1,Moges Semu Ayalew2

Affiliation:

1. Ethiopian Space Science and Technology Institute , Addis Ababa , Ethiopia .

2. Civil and Environmental Engineering , University of Connecticut , Storrs, CT, USA .

Abstract

Abstract Recently water resources reanalysis (WRR) global streamflow products are emerging from high- resolution global models as a means to provide long and consistent global streamflow products for assessment of global challenge such as climate change. Like any other products, the newly developed global streamflow products have limitations accurately represent the dynamics of local streamflow hydrographs. There is a need to locally evaluate and apply correction factors for better representation and make use of the data. This research focuses on the evaluation and correction of the bias embedded in the global streamflow product (WRR, 0.25°) developed by WaterGAP3 hydrological model in the upper Blue Nile basin part of Ethiopia. Three spatiotemporal dynamical bias correction schemes (temporal-spatial variable, temporal-spatial constant and spatial variable) tested in twelve watersheds of the basin. The temporal-spatial variable dynamical bias correction scheme significantly improves the streamflow estimation. The Nash-Sutcliffe coefficient (NSCE) improves by 30% and bias decreases by 19% for the twelve streamflow gauging stations applying leave one out cross-validation approach in turn. Therefore, the temporal-spatial variable scheme is applicable and can use as one method for the bias correction to use the global data for local applications in the upper Blue Nile basin.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3