Temporal response of urban soil water content in relation to the rainfall and throughfall dynamics in the open and below the trees

Author:

Zabret Katarina12,Lebar Klaudija1,Šraj Mojca1

Affiliation:

1. 1 University of Ljubljana , Faculty of Civil and Geodetic Engineering , Jamova 2, 1000 Ljubljana , Slovenia .

2. 2 Institute for Water of the Republic of Slovenia , Einspielerjeva 6, 1000 Ljubljana , Slovenia .

Abstract

Abstract Rainfall interception process is an important part of the biohydrological cycle, in which vegetation plays an important role by regulating the amount and dynamics of rainfall reaching the ground. In this paper, an event-based analysis is performed to discuss the influence of vegetation on dynamic of temporal response of soil volumetric water content (VWC) in the upper soil layer during rainfall events. More specifically, six events that occurred between 19 November 2021 and 30 June 2022, characterized by different hydro-meteorological and vegetation conditions, are analyzed based on continuous measurements of VWC in the open and below groups of two deciduous (Betula pendula Roth.) and two coniferous trees (Pinus nigra Arnold), as well as rainfall in the open and throughfall on an urban experimental plot in Ljubljana, Slovenia. VWC values at the upper depth (16 cm) were the highest under the birch tree, followed by the location in the open and under the pine tree. However, in the lowest depth (74 cm) VWC values were the lowest under the birch tree. VWC responses to rainfall and throughfall showed seasonal patterns related to the pre-event wetness conditions, with a faster occurrence of maximum VWC values in the leafless period. Additionally, rainfall amount and its dynamics during the event significantly affect the response, as VWC in general reaches its peak after the occurrence of more intense rainfall. Such an event-based analysis, offering an insight into the dynamics of the event development, is crucial and very beneficial for understanding of the biohydrological processes.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3