Detailed procedure for outdoor measurement of raindrop size distribution using photogrammetry
Author:
Abdollahi Zahra12, Sadeghi Seyed Hamidreza1, Darvishan Abdulvahed Khaledi1
Affiliation:
1. Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences , Tarbiat Modares University , Noor 4641776489, Mazandaran, Iran . 2. At present, Soil Conservation and Watershed Management Research Department , Zanjan Agricultural and Natural Resources Research and Education Center , AREEO, Zanjan, Iran .
Abstract
Abstract
Kinetic energy and corresponding erosive force of rainfall are strongly influenced by raindrop. The present paper aims to explore the raindrop size variation during rainfall events with different intensities in northern Iran by applying the processes of camera-taken photographs. Five rainfall intensities of 1 to 10 mm h–1 that occur frequently in the study area were analyzed. A camera with a very short exposure time was used to record the distribution of raindrops size. The raindrops diameters of the rain events ranged from <0.2 to 5.1 mm while the majority of them were between 1 and 2 mm. The results also showed that the variation of rainfall intensity significantly influenced (P< 0.05) raindrops size. Image processing was proven as an accurate technique of translation between the human visual system and digital imaging devices. The findings of the study can be practically utilized by researchers who work in the field of soil erosion and meteorology.
Publisher
Walter de Gruyter GmbH
Reference58 articles.
1. Angulo-Martínez, M., Beguería, S., Kyselý, J., 2016. Use of disdrometer data to evaluate the relationship of rainfall kinetic energy and intensity (KE-I). Sci. Total Environ., 568, 83–94. https://doi.org/10.1016/j.scitotenv.2016.05.223. 2. Asadpour, F., Habibi, A., 2015. Strategies for climatic design for sustainable urban housing development (case study of Nur City, Mazandaran, Iran. Sci. J. (CSJ), 36, 6, 653–654. 3. Bringi, V.N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeuand, W.L., Schoenhuber, M., 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Atmos. Res., 60, 354–365. https://doi.org/10.1175/1520-0469 4. Chang, X., Zheng, K., Xie, D., Shu, X., Xu, K., Chen, W., Li, B., Wu, Ch., 2019. In situ image acquisition and measurement of microdroplets based on delay triggering. Micromachines, 10, 2, 148. https://doi.org/10.3390/mi10020148 5. Chang, W.-Y., Lee, G., Jou, B. J.-D., Lee, W.-C., Lin, P.-L., Yu, C.-K., 2020. Uncertainty in measured raindrop size distributions from four types of collocated instruments. Remote Sens., 12, 1167. https://doi.org/10.3390/rs12071167
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|