Application of Forced Modulation Function Mathematical Model in the Characteristic Research of Reflective Intensity Fibre Sensors

Author:

Dai Lihua1,Wang Ben2,Cheng Xuemin1,Wang Qin1,Yu Junchang3

Affiliation:

1. Suzhou Vocational Institute of Industrial Technology , Suzhou , China

2. Shure Incorporated. , Suzhou , China

3. Dongbei Branch China Construction Eighth Engineering Division Corp., Ltd , Dalian , China

Abstract

Abstract In order to discuss the application and mode of the forced modulation function in a sensor, the optical fibre emphasis function was established by referring to the geometric method, the tilt factor and the shape factor of the reflecting surface. These were introduced for the first time, and the corresponding mathematical model was established. The method of numerical simulation is systematically studied and multimode optical fibre parameters (including optical fibre of axial spacing, optical fibre core diameter and numerical aperture) are adopted. The reflective surface inclination and shape factors on the RIM–FOS intensity modulation characteristics are studied according to the obtained light quasi-Gaussian distribution model, establishing a general three-intensity modulation function of fibre optic sensor. The results show that the intensity modulation characteristic of specular reflection is obviously better than that of the diffuse reflection surface, and the peak value of the modulation function is five times that of diffuse reflection. The intensity modulation characteristic decreases with increase in the roughness of the reflection surface. The system can not only complete the RIM–FOS characteristic simulation and characteristic testing functions, but can also start-up the test and not be affected by the ambient light interference and power fluctuation of the light source. The test stability is good with high repeatability.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3