Limit cycles of a generalised Mathieu differential system

Author:

Diab Zouhair1,Guirao Juan L.G.2,Llibre Jaume3,Makhlouf Amar4

Affiliation:

1. Department of Mathematics and Computer Science , Larbi Tebessi University , Tebessa , Algeria

2. Department of Applied Mathematics and Statistics , 30203–Cartagena , Spain

3. Departament de Matemátiques , Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Catalonia , Spain

4. Department of Mathematics, Faculty of Sciences , University UBM of Annaba , Elhadjar , Annaba 23 , Algeria

Abstract

Abstract We study the maximum number of limit cycles which bifurcate from the periodic orbits of the linear centre x ˙ = y \dot x = y , y ˙ = x \dot y = - x , when it is perturbed in the form (1) x ˙ = y ε ( 1 + cos l θ ) P ( x , y ) , y ˙ = x ε ( 1 + cos m θ ) Q ( x , y ) , \dot x = y - \varepsilon (1 + \mathop {\cos }\nolimits^l \theta )P(x,{\kern 1pt} y),\quad \dot y = - x - \varepsilon \left( {1 + \mathop {\cos }\nolimits^m \theta } \right)Q(x,{\kern 1pt} y), where ɛ > 0 is a small parameter, l and m are positive integers, P(x, y) and Q(x, y) are arbitrary polynomials of degree n, and θ = arctan (y/x). As we shall see the differential system (1) is a generalisation of the Mathieu differential equation. The tool for studying such limit cycles is the averaging theory.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3