Impacts of cryopreservation on phenotype and functionality of mononuclear cells in peripheral blood and ascites

Author:

Zhang Jie12,Yin Zhongnan12,Liang Zhaoyuan1,Bai Yang1,Zhang Ting12,Yang Jianling1ORCID,Li Xianlong1ORCID,Xue Lixiang12ORCID

Affiliation:

1. Center of Basic Medical Research, Institute of Medical Innovation and Research , Peking University Third Hospital , Beijing , China

2. Biobank, Peking University Third Hospital , Beijing , China

Abstract

Abstract Background Mononuclear cells in peripheral blood and ascites are important clinical resources commonly used in translational and basic research. However, the impact of different cryopreservation durations and extra freeze-thaw cycles on the number and function of mononuclear cells is unknown. Methods Peripheral blood samples (n = 21) and ascites samples (n = 8) were collected from healthy volunteers and ovarian cancer patients. Mononuclear cells were isolated, frozen, and thawed at 6 and 12 months. The impact of cryopreservation on cell viability, the phenotype, and the activation and proliferation of T cells were analyzed by flow cytometry. Single-cell sequencing was applied to investigate the underlying mechanism. Results The cell number and viability of mononuclear cells in peripheral blood and ascites were significantly decreased after cryopreservation. The T lymphocytes, especially CD4+ T cells, were affected the most significantly. By contrast, monocytes, natural killer (NK) cells, natural killer T (NKT) cells, and B cells were more tolerant. Meanwhile, T cell proliferation and IL-2 secretion are significantly affected after long-term cryopreservation. Mechanistically, the cell death induced by elevated reactive oxygen species (ROS) was involved in the reduction of CD4+ T cells after cryopreservation. Conclusions Our data indicates that different subtypes of mononuclear cells exhibit different tolerance capacities upon cryopreservation. Thus, our research can provide evidence and support for individuals who are conducting experiments using frozen clinical patient-derived mononuclear cells, for basic research or clinical trials. In addition, extra caution is worthwhile when researchers compare immune cell functionality from peripheral blood or ascites across datasets obtained in different cryopreservation conditions.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3