Potential Decay Simulation on Insulating Films

Author:

Kasri S.1,Herous L.1,Smili K.12,Kimour M. T.3,Dekhane A.1

Affiliation:

1. Laboratory of Electromechanical Engineering , University of Badji Mokhtar , B.P.12, Sidi Amar, Annaba, 23220 , Algeria

2. Higher School of Industrial Technologies , Safsaf city, BP 218, Annaba, 23000 , Algeria

3. Laboratory of Embedded Systems Research (LASE) , University of Badji Mokhtar , B.P.12, Sidi Amar, Annaba, 23220 , Algeria

Abstract

Abstract Surface potential decay (SPD) of a corona charged polymeric material is a powerful tool to characterise electrical properties such as charge transport, trapping/detrapping and recombination. Over the years, various predictive simulation techniques have been proposed to describe charge transport within the material. Despite recent progress, it appears that there have been a few attempts to theoretically interpret the nature of the charge migration on the insulation surface. The aim of the present paper is to introduce a new technique with differential evolution algorithm (DEA) to reveal the steady state surface potential decay experimental results. Experimental measurement was carried on a thin film of polyethylene terephthalate (thickness: 0.5 mm; surface: 50 mm × 50 mm). The domains of variation of the factors used were respectively: 1000 V to 1800 V; 25 to 55 °C; 50 % to 80 %. The simulation results show that computational modelling and optimization approaches may improve the effectiveness to characterise electrical properties of polymers. More importantly, these studies demonstrate that DEA is effective and performs better than the experimental design method.

Publisher

Walter de Gruyter GmbH

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3