Multifocal Near-Eye Display: Timing of Optical Diffuser Elements and Synchronization to DLP-Based Projection Microunit

Author:

Ruskuls R.1,Slics K.1,Ozolins R.2,Fenuks R.3,Linina E.3,Osmanis K.1,Osmanis I.1

Affiliation:

1. Hansamatrix Innovations Ltd ., 1 Ziedleju Str., Marupe, LV-2167 , Latvia

2. Hansamatrix Ventspils Ltd., 1 Ventspils Augsto tehnoloģiju parks , Ventspils , , Latvia

3. LightSpace Technologies , 1 Ziedleju Str., Marupe , , Latvia

Abstract

Abstract The paper present the key technical details of a multifocal near-eye display concept. Along with an overview of the basic architecture, a particular implementation that utilises a digital light processing (DLP®) based spatial light modulator as the image source is provided in the study. The investigated approach involves the utilisation of a small-scale volumetric screen formed by a stack of fast-switching optical diffuser elements based on liquid crystal technology. The volumetric screen is illuminated by a rear image projector. To make the whole system functional and small, the challenge lies within the development of integrated control board for the projection modules as well as the synchronization of the DLP® projector image output to the optical diffuser element switching-cycle. The main difficulty of the development process is accounting for the peculiarities of in-house developed diffuser elements and the off-the-shelf DLP®, which is the main focus of this paper. There is no direct control over the full set of DLP® operational parameters, an indirect method for adjusting frame dead time is proposed, showing that an increase in dead time close to 0.3 ms (from 0.3 ms to 0.6 ms in the particular setup) can be achieved without significantly sacrificing image colour depth or quality. Tuneable dead time mitigates the limitations set by the non-instantaneous switching of liquid crystal diffuser elements as longer dead times allow for the removal of image bleeding between frames.

Publisher

Walter de Gruyter GmbH

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3