A comparative assessment between artificial neural network, neuro-fuzzy, and support vector machine models in splash erosion modelling under simulation circumstances

Author:

Boroughani Mahdi1,Soltani Somayeh2,Ghezelseflu Nafiseh3,Pazhouhan Iman4

Affiliation:

1. Center for Geosciences and Social Studies , Hakim Sabzevari University , Sabzevar , Iran

2. Department of Water Sciences and Engineering, College of Agricultural and Natural Resources , Ardakan University , Ardakan , Iran

3. Department of Watershed Management , Ardakan University , Ardakan , Iran

4. Nature Engineering Department, Faculty of Natural Resource and Environment , Malayer University , Malayer , Iran

Abstract

Abstract Splash erosion, as the first step of soil erosion, causes the movement of the soil particles and lumps and is considered an important process in soil erosion. Given the complexity of this process in nature, one way of identifying and modeling the process is to use a rainfall simulator and to study it under laboratory circumstances. For this purpose, transported material was measured with various rainfall intensities and different amounts of poly-acryl-amide. In the next step, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) were used to model the transported materials. The results showed that among the three methods, the best values of evaluation criteria were related to SVM, and ANFIS respectively. Among the three studied durations, the experiment with a duration of 30 minutes received the best results. The results based on available data showed by increasing the number of membership functions, over-fitting happens in the ANFIS method. To reduce the complexity of the model and the likelihood of over-fitting, some rules were eliminated. The results showed that the performance of the model improved by eliminating some rules.

Publisher

Walter de Gruyter GmbH

Reference46 articles.

1. Abraham, A., Nath, B., 2001. Hybrid intelligent systems design – A review of a decade of research. Technical Report, 5/2000. Gippsland School of Computing and Information Technology, Monash University, Australia.

2. Akbarzadeh, A., Taghizadeh Mehrjardi, R., Rouhipour, H., Gorji, M., Refah, H.G. 2009. Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Sciences Research, 5: 505–514. (In Persian).

3. Assad, A.A., Gass, S.I. (eds), 2011. Profiles in operations research: Pioneers and innovators. International Series in Operations Research et Management Science, 147. Boston: Springer Science & Business Media. 824 p.10.1007/978-1-4419-6281-2

4. Bernard. V., Thomas, J., Abarbanell, J., 1993. How sophisticated is the market in interpreting earnings new? Applied Corporate Finance, 6: 54–63. https://doi.org/10.1111/j.1745-6622.1993.tb00383.x10.1111/j.1745-6622.1993.tb00383.x

5. Boroghani, M., Hayavi, F., Noor, H., 2012. Affectability of splash erosion by poly-acryl-amide application and rainfall intensity. Soil and Water Research. (4): 159–165. https://doi.org/10.17221/45/2011-SWR10.17221/45/2011-SWR

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3