Towards validating a last generation, integrated wave-current-sediment numerical model in coastal regions using video measurements

Author:

Carniel Sandro1,Sclavo Mauro1,Archetti Renata2

Affiliation:

1. Institute of Marine Sciences (CNR-ISMAR) , Castello 2737-F, I-30122 , Venice , Italy

2. DICAM , University of Bologna , Bologna , Italy

Abstract

Abstract This paper presents the first steps in the implementation of a morphological numerical model to be applied in the Bevano River region, a shallow water area in the Adriatic Sea, with the aim of helping the identification and assessment of erosional patterns and bottom morphological modifications induced by severe marine storms. The numerical modeling, performed using a fully 3D coupled wave-current-sediment version of the ROMS model, has been complemented with in situ data analysis and observations: a first qualitative validation of the results was given by the analysis of images acquired via an ARGUS video station. Hydrodynamic modeling highlighted how shear bottom stresses and bottom currents fields were heavily influenced by severe storm situations, and had large effects on the morphology of shallow regions. The correlation between the wave-current induced bottom stresses and the resulting topography was investigated. Nearshore hydrodynamics modeling results demonstrated the dominant role played by alongshore sediment transport, with the magnitude of both cross- and along-shore wave-induced currents strongly depending on wave height and direction. We found a good qualitative conformity between the results of the numerical models applied during a “Bora” storm and the corresponding video observations; both techniques indicated the migration of the existing sandbar within the range of about 40 m seaward. Results show how integrated numerical open source tools, often used in oceanography, are becoming suitable for both preliminary investigations and for planning the effective littoral management, and how their calibration can be supported by the use of new low cost techniques, such as video measurements.

Publisher

Walter de Gruyter GmbH

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3