Measuring the Sustainable Development Goal Indicators: An Unprecedented Statistical Challenge

Author:

MacFeely Steve1

Affiliation:

1. United Nations Conference on Trade and Development , Palais des Nations, CH-1211 Geneva 10, Switzerland .

Abstract

Abstract In March 2017, the United Nations (UN) Statistical Commission adopted a measurement framework for the UN Agenda 2030 for Sustainable Development, comprising of 232 indicators designed to measure the 17 Sustainable Development Goals (SDGs) and their respective 169 targets. The scope of this measurement framework is so ambitious it led Mogens Lykketoft, President of the seventieth session of the UN General Assembly, to describe it as an ‘unprecedented statistical challenge’. Naturally, with a programme of this magnitude, there will be foreseen and unforeseen challenges and consequences. This article outlines some of the key differences between the Millennium Development Goals and the SDGs, before detailing some of the measurement challenges involved in compiling the SDG indicators, and examines some of the unanticipated consequences arising from the mechanisms put in place to measure progress from a broad political economy perspective.

Publisher

Walter de Gruyter GmbH

Reference53 articles.

1. Annan, K. 2000. We the peoples: The role of the United Nations in the 21st century. Available at: http://www.un.org/en/events/pastevents/pdfs/We_The_Peoples.pdf (accessed February 2017).

2. Casalini, F. and J. López González. 2019. Trade and Cross-Border Data Flows. OECD Trade Policy Papers, No. 220, OECD Publishing, Paris. DOI: http://dx.doi.org/10.1787/b2023a47-en.

3. Cervera, J.L., P. Votta, D. Fazio, M. Scannapieco, R. Brennenraedts, and T. van der Vorst. 2014. Big Data in Official Statistics. Eurostat ESS Big Data Event, Rome 2014 – Technical Event Report. Available at: https://ec.europa.eu/eurostat/cros/system/files/Big%20Data%20Event%202014%20-%20Technical%20Final%20Report%20-finalV01_0.pdf (accessed January 2018).

4. Chui, M.J., D. Farrell, S. van Kuiken, P. Groves, and E.A. Doshi. 2013. Open Data: Unlocking innovation and performance with liquid information. McKinsey Digital, McKinsey Global Institute. Available at: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/open-data-unlocking-innovation-and-performance-with-liquid-information (accessed November 2019).

5. Cohen, B.R. 2013. “The Confidence Economy: An Interview with T. J. Jackson Lear.” Available at: https://www.publicbooks.org/the-confidence-economy-an-interview-with-t-j-jackson-lears/ (accessed June 2019).

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3