Analysing Sensitive Data from Dynamically-Generated Overlapping Contingency Tables

Author:

Bon Joshua J.1,Baffour Bernard2,Spallek Melanie3,Haynes Michele3

Affiliation:

1. Queensland University of Technology , School of Mathematical Sciences , GPO Box 2434, Brisbane, Queensland , 4001, Australia .

2. Australian National University , School of Demography , 9 Fellows Road, Acton, ACT 2601, Australia .

3. Australian Catholic University , Institute for Learning Sciences and Teacher Education , 229 Elizabeth St, Brisbane, Queensland , 4000, Australia .

Abstract

Abstract Contingency tables provide a convenient format to publish summary data from confidential survey and administrative records that capture a wide range of social and economic information. By their nature, contingency tables enable aggregation of potentially sensitive data, limiting disclosure of identifying information. Furthermore, censoring or perturbation can be used to desensitise low cell counts when they arise. However, access to detailed cross-classified tables for research is often restricted by data custodians when too many censored or perturbed cells are required to preserve privacy. In this article, we describe a framework for selecting and combining log-linear models when accessible data is restricted to overlapping marginal contingency tables. The approach is demonstrated through application to housing transition data from the Australian Census Longitudinal Data set provided by the Australian Bureau of Statistics.

Publisher

Walter de Gruyter GmbH

Reference29 articles.

1. ABS. 2012. TableBuilder user manual. Technical report, Australia Bureau of Statistics, Canberra, ACT (cat.no 2065.0). Available at: http://www.abs.gov.au/tablebuilder (accessed October 2016).

2. ABS. 2013. Australian Census Longitudinal Dataset: Methodology and quality assessment – 2080.5 – 2006-11. Technical report, Australia Bureau of Statistics, Canberra, ACT. Available at: https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/2080.5Main+Features12006-2016 (accessed October 2016).

3. Agresti, A. 1981. “Measures of nominal-ordinal association.” Journal of the American Statistical Association 76(375): 524–529. DOI: https://doi.org/10.1080/01621459.1981.10477679.

4. Agresti, A. 2002. Categorical Data Analysis. Springer, second edition.

5. Akaike, H. 1974. “A new look at the statistical model identification.” IEEE Transactions on Automatic Control 19(6): 716–723. DOI: https://doi.org/10.1109/TAC.1974.1100705.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marginal Models: An Overview;Trends and Challenges in Categorical Data Analysis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3